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SUMMARY 

An improved Vorticity-Potential method is presented for the numerical solutions of three-dimensional duct 
flow problems. The solution procedure requires first a potential solution. Then the viscous effects are added 
through the vorticity transport equation. By using body-fitted coordinates, the method is applied to simulate 
the incompressible laminar flows in a square elbow and in a twisted square elbow. 

KEY WORDS Vorticity-Potential 3-D Body-Fitted Grid Navier-Stokes Internal Flow 

INTRODUCTION 

In recent years, a number of numerical approaches have been developed in order to simulate three- 
dimensional duct flows. Many of them are based on the Vorticity-Potential formulations, which 
can be regarded as the generalization of the two-dimensional Vorticity-Stream function 
formulation. Although the stream function has been successfully used in 2-d flow modelling, there 
has been much confusion over the determination of boundary conditions appropriate to the vector 
potential. Its applications, therefore, are very limited. 

In 1968, Hirasaki and Hellums' formally derived the first set of boundary conditions on the 
vector potential by requiring the solution of a second partial differential equation. Their 
formulation was relatively simple for confined flows, but too complex for flow-through situations. 
Later, Hirasaki and Hellums2 simplified their conditions by introducing a scalar potential. For the 
flow-through problems, they proposed that the normal derivatives of .the scalar potential be the 
normal components of the velocities on the boundaries. However, this would not be applicable if 
the specified inlet velocities were rotational, which we will discuss later, or if the outlet velocities 
were not known a priori. Recently,Wong and Reizes3 demonstrated that it is possible to remove the 
requirements of the scalar potential by setting an initial velocity component. This is simply the 
normal component of the specified inlet velocity and maintains the same value along the main flow 
direction. This technique does reduce somewhat the computational efforts, but its application is 
restricted to flows in straight ducts of constant cross section. Furthermore, it is not applicable to 
flows with rotational velocities on the inlet plane. 

The purpose of the present paper is to discuss some of the difficulties associated with the 
boundary conditions on the scalar potential, and present a new set of boundary conditions for the 
Vorticity-Potential formulations. An improved Vorticity-Potential method is then obtained and 
shown to be applicable to much more general duct flow situations than the prior techniques. 
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THE VORTICITY-POTENTIAL FORMULATION 

The Vorticity-Potential formulation is based on potential theory, which has been fully discussed 
by Hirasaki and Hellums.' For a given velocity field V, there exists a vector potential A satisfying 

V = V x A ,  ( 1 )  

V.A = 0. ( 2 )  

The relation between the vector potential A and the vorticity W is established by taking the curl of 
equation (1) which yields 

V2A = - W, (3) 

w=vxv. (4) 

where the vorticity is defined by 

The boundary conditions on A, derived by Hirasaki and Hellums,' are 

where subscripts t, and t, denote the two tangential components, respectively. The solenoidal 
condition is applied to determine the normal component, An. V, x is the surface curl defined as the 
usual curl with the assumption of 

- = 0. 
a 
an 

B is a vector function defined on the boundary surface. It satisfies the equations 

Bt, = 0, 
4, = 0, 
n.(V, x (V, x B)) = n-V. 

(7) 

The main difficulty which arises when using these conditions is to solve for the vector B. 
However, if the velocity vector V is aligned with the boundaries, the vector B could be set as the null 
vector. This has been proved by Hirasaki and Hellums.2 They introduced a scalar potential 4 
through 

(8) V =  -V4 + V x A 
with the boundary condition as 

Using this technique, A is the vector potential of the vector field V + V4, which is tangent to all the 
boundaries. Consequently the boundary conditions on A are as follows: 
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This scalar and vector potential formulation provides an effective means of solving 3-d flow 
problems, in particular, incompressible flow problems in which the scalar potential 4 can be solved 
independently by the equation of continuity 

v24 = 0. ( 1  1) 

However, as mentioned by Wong and R e i z e ~ , ~  one well-known disadvantage is the increased 
number of equations to be handled. In order to reduce the calculation efforts, Wong and Reizes3 
used a new irrotational component V of the velocity V in place of - V4:  

V = V ' + V  x A, (12) 

where V is defined as 

V = (n*V)n, 
V' = V'I,=,, 

on the inlet plane, 
on other sections, 

where z is the coordinate along the flow direction and z,, is the location of the inlet plane. 
It is obvious that this technique eliminates the need to solve for 4, but it is restricted to flows in a 

straight duct of constant cross section. Also it requires the specified inlet velocity to be uniform, 
otherwise the component V' is not irrotational. Consequently, this method is not applicable if the 
flow region has an arbitrary shape, or if the flow has a non-uniform inlet velocity profile. 

Another serious problem in the use of scalar and vector potential formulation is associated with 
the numerical calculation of 4. For most duct flow situations, the specified inlet velocity is 
rotational, as for instance, the flow in a straight duct with a parabolic inlet velocity profile. In those 
situations, since V 4  is irrotational, it would be extremely difficult for the vector V 4  to fit the 
boundary conditions of a rotational property.To illustrate this problem, consider a flow situation 
as shown in Figure 1. Let 4j and Vj be the values of the scalar potential and the velocity at the nodes 
P j .  Applying the difference technique to equation (9), we have 

It is clear that there is no solution for 4 at these nodes. Probably this is the reason why Aregbesola 
and Burley4 encountered a slow convergence solution of 4 by assuming a fully developed velocity 
profile on the exit plane, which is not irrotational. 

f 

Figure 1. Illustration of inlet velocity profile with rotational property 
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A NEW SET OF BOUNDARY CONDITIONS 

In order to reduce the degree of difficulty in the calculation of 4, a new set of boundary conditions is 
proposed for incompressible flows in ducts of arbitrary cross sections. 

Boundary conditions on 4 
The scalar potential defined by equation (8) is required to satisfy 

-=0  on solid walls, a4 
an 

- ui on the inlet plane, - -- 
an 

-_  a4 - - u, 
dn 

on the outlet plane, 

where vi and v, are mean velocity values defined by 

n-Vds, 
(16) v, = u,(inlet area/outlet area). 

It is obvious that these conditions provide a uniform gradient of 4 on both inlet and outlet 
planes, which would be irrotational provided the upstream and downstream tangents are 
sufficiently long. It is also believed that this technique will accelerate the convergence in solving 4, 
and will result in a higher accuracy. 

inlet 

Boundary conditions on A 

Applying Hirasaki and Hellums' theory' to the vector field (V+V4),  we obtain the same 
boundary conditions on A as described by equation (5) ,  but instead of equation (7), B satisfies 

B,, = 0, 
B,, = 0, 

n.(V, x (V, x B) = n.(V + V4). 

For duct flows, these conditions can be simplified as follows. 
On the solid walls, the no-slip boundary condition applies: 

v = 0. 

Substituting this and equation (15) into equation (17), we have 

B = 0. 

So the boundary conditions become 

The flow is assumed to be fully developed on the outlet plane. So an extrapolation technique is 
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used to remove the need to specify the velocity on the outlet. This is stated as 

a2A 
p = O .  

If the inlet plane is of the type z = const. in a Cartesian system, equation (1 7) reduces to 

B, = By = 0, 

The boundary conditions on A, equation ( 9 ,  become 

aB 
A, = (V, x B) = 2, 

aY 

Ay=(V, x B)= --, ax 

on the inlet plane. 

Boundary conditions on W 

Taking the curl of the Navier-Stokes equation yields the vorticity transport equation 

(V-V)W - (W.V)V = V’WJRe, (22) 

where Re is the Reynolds number. The boundary conditions on W are relatively simple: 

W = V x V on the inlet plane and walls, 

on the outlet plane. 

SOLUTION PROCEDURE 

To facilitate the treatment of the boundary condition for flows in a general curved duct, the 
Cartesian coordinate system is transformed to a body-fitted curvilinear coordinate system. The 
transformed governing equations are fully described in Reference 5. 

The discretization is carried out using centred differences inside the domain for all of the 
equations. The boundary conditions on 4 are treated implicitly, while others are treated explicitly. 
In the explicit treatment, the one-sided difference formula 

is used at the boundary nodes to ensure that the entire discretized system is of second order 
accuracy. Subscript b denotes the boundary point in the formula. 

All the equations are solved by the block SOR method, in which the implicit block contains the 
nodes in one mesh line in a cross-stream direction. The relaxation parameter o is about 1.5 for both 
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the scalar and the vector potential equations, while the vorticity transport equation is underrelaxed 
with a value of w less than 0.7. 

The overall solution procedure consists of the following steps. 
(i). Generation of the body-fitted grid, and calculations of the coordinate transformation 

(ii). Computation of the scalar potential from equation (1 1) to the desired accuracy. 
(iii). Cycling the iterative computations between the vorticity transport equation, equation (22) ,  

and the relation between A and W, equation (3), until a converged velocity field is obtained. 
The iterative procedure for the scalar potential is initialized by using a linear interpolation 

technique. After the scalar potential is obtained to a given accuracy, the velocity field is set to the 
potential solution - V4, The initial values of A and W are set to zero. 

coefficients. 

NUMERICAL TESTS 

To evaluate the proposed numerical model, the overall algorithm was coded and several tests were 
carried out to help establish its accuracy, stability and efficiency. 

The first test is the simulation of the development of the flow in a square duct of aspect ratio 
1 : 1 :8. Under the present set of boundary conditions, the potential velocity field is identical to a 
uniform vector field, so the calculation of 4 is not necessary in this case. A viscous velocity field is 
computed at Re = 50 on a uniform grid of 11 x 11 x 21. The results obtained are very similar to 
those calculated by Wong and R e i ~ e s . ~  This is expected since the present model is identical with 
theirs for this simple flow problem, except for some minor differences in the boundary conditions 
on W. 

Flow in a square elbow was then simulated to evaluate the applicability of the model to curved 
ducts. The configuration of the elbow is shown in Figure 2. A uniform 1 1 x 1 1 grid was used in each 
cross section and 21 sections were employed along the elbow. The lengths of upstream and 
downstream tangents are set to be 0.35H and 0.53H respectively, where H is the width of the elbow. 

Inlet 

Figure 2. Description of the square elbow: R = 2.0, R = 3.0, L = 0.35, L = 0.52, H = 1.0, 0 = 6 0  



IMPROVED VORTICITY-POTENTIAL METHOD 

0.0 0'. 5 

41 

1.0 I 
2+---n-l- 

, 

Figure 3. Streamwise profile of the potential velocity in the square elbow, Location of 0 = 32":-present results; ------ 
analytical results 

The velocities at inlet are assumed to be 

Vz=36.0~y(l  -x)( l  - y ) ,  O < X <  1 ,  O < y <  1 ,  
v, = 0, 
v, = 0, 

which are similar to the velocities of fully developed flow in a square duct. 
A satisfactory potential solution for this geometry required 300 iterations and about 10 min of 

CPU time on an IBM 4341. The R.M.S. of the residual in the converged solution is of the order of 
The streamwise profile of the potential velocity - V$ at the section of 0 = 32" (0 is the angle 

of turning) is compared in Figure 3 with the analytical solution of irrotational motion. It illustrates 
the accuracy of the potential solution and proves that the present boundary conditions on $ are 
suitable. 

To add the viscous influence (with Re = 80), 60 cycles of computations between the vorticity 
transport equation, equation (22), and the relation between A and W, equation (3), were performed. 
The run time is about 22 min. 

An interesting physical characteristic of flow in a curved duct is the development of secondary 
flows. Figure 4 shows that this phenomenon is reasonably simulated by the present model. The 
helical motion originates at the section of 8 = 8", and becomes stronger as the flow turns through 
the duct. At the exit, the secondary flow does not disappear entirely, because the downstream 
tangent is relatively short, and it would require a length of 007Re = 5.6 for the re-development 
of the flow. It can also be observed that, as the flow progresses, the centres of the streamwise 
vortices move symmetrically toward the pressure surface, drawn by the strong radial flow in the 
central plane. At the same time the high streamwise velocities existing near the duct centre move 
towards the pressure surface as indicated in Figure 5. In Figure 6 the streamwise velocity profile at 
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( b )  
1 

Figure 4. Development of secondary flow in the square elbow at Re = 8 0  (a) on the section of 8 = 8"; (b) on the section of 
0 = 24"; (c) on the section of 8 = 40"; (d) on the section of 8 = 56"; (e) on the outlet plane 

Figure 5. Development of the streamwise velocity profiles in the square elbow at Re = 80 
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Figure 6. Fully developed streamwise velocity profile in the square elbow:-present results;----Khalil computed 
results;-.-.-.-.Mori measured results 

the section of 8 = 60" is compared with other fully developed velocity profiles: one is computed by 
Khalil and Weber6 from the time averaged Navier-Stokes equations, and the other measured 
experimentally by Mori et al.' Near the suction surface, the present results are much closer to the 
measurements than those of Khalil and Weber. The two computations show almost no difference 
near the pressure surface. The difference between the measurements and various computations in 
the high velocity part has not been adequately explained yet. 

Figure 7. Potential velocity distribution on the walls of twisted elbow 
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Figure 8. Central slice of velocity vector field at Re = 80 

For the purpose of investigating the response of the present model to differences in Reynolds 
numbers, solutions at Re = 10 and 100 were also computed. From a numerical aspect, it is found 
that, the higher Re is, the smaller is the value of the relaxation parameter required for the vorticity 
transport equation. The optimal relaxation parameters used in the present series of tests are 0.7,0.3 
and 0.1 5 for Re = 10,80 and 100, respectively. Consequently, a slower convergence is obtained for 
higher Reynolds numbers. For Re = 150, divergence resulted. To stabilize the numerical iterations 
for higher Re, the upwind-difference technique should be employed, as noted by Aregbesola and 
B ~ r l e y . ~  

Another numerical test is devoted to show the capability of the present model to predict flows in 
complex duct. The geometry is a 60-degree turning elbow with 60-degree twist around its central 
line. The potential solution, shown in Figure 7, shows again that the boundary conditions on 4 are 
well applied. Figure 8 presents the middle slice of the viscous velocity field at  Re = 80. It can be 
clearly seen that the flow re-develops into a straight duct flow type in the downstream tangent. The 
velocity profile obtained at the exit is about the same as that of fully developed straight duct flow, 
which shows that the extrapolation technique used in the present model is acceptable in the 
simulation of duct flow. 
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NOMENCLATURE 

A vector potential function 
n 
t 
V velocity vector variable 
W vorticity vector variable 
x, y, z Cartesian coordinates 
4 scalar potential function 

unit vector normal to boundaries 
unit vector tangent to boundaries 
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